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Abstract

A new algorithm, called the Minimal Residual
QR algorithm, is presented to solve subset regres-
sion problems. It is shown that this new scheme
can be used as a numerically reliable implementa-
tion of the stepwise regression technique, which
is widely used to identify an aerodynamic model
from flight test data. This capability as well as
the numerical superiority of this scheme over the
stepwise regression technique is demonstrated in
an experimental simulation study.

1. Introduction

This paper describes a study of the so-called
subset regression problem (SRP). This problem
occurs in the identification of a mathematical
model representing the aerodynamic forces and
moments which act on an aircraft as a function of
1} alreraflt state gquantities, such as angle of
attack and Mach number and 2) aircraft input quan-
tities, such as control surface deflections. This
mathematical model is referred to as the air-
craft's aerodynamic model. In Refs. 1-3, precise
conditions have been stated which allow formula-
tion of this identification problem as an SRP.

In this paper, we focus on the numerical
techniques used to solve SRP. Generally, tech-
niques for solving SRP are divided into two dif-
ferent classes:

1) A first class is formulated in a complete
statistical framework. The techniques in this
class are generally referred to as subset regres-
sion methods and are widely Hsed by practicing
engineers and econometrists.

2) A second class has its basis mainly in
numerical analysis. Currently the most widely
used technique from this class is _the Singular
Value Decomposition (SVD) method .

The SVD has clearly demonstrated its numeri-
cal sugerlorlty over the techniques from the first
class., However, it does not do the subset selec-
tion from the originally defined model parameters.

This is a major drawback for the aerodynamic model

identification problem, since the original model
parameters have a physical interpretation.

In order to overcome this drawback, a new
algorithm has been developed. This new technique
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is called the Minimal Residual QR (MRQR) algo-
rithm. Although the MRQR scheme is derived from a
numerical analysis point of view and therefore
belongs in the second class mentioned above, it
will be shown that it combines the advantages of
techniques from both classes. On the one hand, it
retains the precision of the original data such as
the SVD and on the other hand can be used In a
complete similar way as the stepwise regression
technique (SRT), since it produces quantities such
as sequential F-tests, etc.

The outline of the paper is as follows. In
Section 2, the new scheme will be described. Its
relationship with the existing SRT is indicated in
Section 3, and Section U presents the result of a
comparison study between the MRQR and the SRT.
Finally, Section 5 presents the conclusions of
this research.

2. The Minimal Residuai OR Aigorithm

This new scheme is originally proposed in
Ref. 7. 1In this section, we review this scheme to
reveal the relationship with the SRT.

The MRQR algorithm performs a QR factoriza-
tion with column pivoting of the system matrix
A in the considered SRP. If this SRP is denoted

as:
mintAx - b, (1)
x
with I-I2 representing the Euclidean norm, and
Aef™™mz2n, ber", xeg"
and

rank{(A) = k € n

then we can write the result of MRQR as

min1Q Ax(x"x) - Q'bi, (2)
x
where is an orthogonal transformation matrix,
f.e., Q'Q =1 and = is the column permutation
matrix. The operation indicated by Eq. (2)
results {n
R,.|R X b -
o R -
X 221172 >

where R

is kxk and upper triangular, Ryo

is kx(n-k) and by € RK. From the decomposition
of Eq. (3), the solution to Eq. (1), which now is
no longer a minimal norm solution, becomes




17 Rby "
and the 2-norm of the residual is given by I:IZ.

The crucial part in this computational scheme
(Eqs. (2-U4)) is the generation of the column per-
mutation matrix =. The way this is done In the
MRQR scheme is now illustrated for the simple two-
dimensional case.

2.1 The Two-Dimensional Case

In this case, the data of problem (1), i.e.,
the two-column vectors of A and the right hand
side (rhs) b, are graphically represented in
Fig. 1.

Just as with the SRT, the MRQR algorithm
selects one column vector of A at a time. The
measure initially proposed in Ref. 7 for this
selection is "the distance of the rhs to the
column vectors of A."

In Fig. 1, these distances are denoted by
m_, where the superscript indicates that we are
selecting the first column and the subscript indi-
cates the corresponding column position in the
A-matrix. The column that will be selected by the
MRQR algorithm is the one "closest" to the rhs.
This correspoqu to finding the minimum of the
sequence (Im_ &}, which for th? case of Fig. 1
results in the selection of a,. This column is
then permuted to the first column position of
A. In the next step, the same selection procedure
is repeated for the components of the remaining
columns of A and the component of the rhs that
is orthogonal to a,. Tgese components are rep-
resented in Fig. 1 by a, and b“, respectively.
qu selection in the ortgogonzl complement of
a1 is obvious now, since lm2I = 0.

The quantities Imll will be referred to as
"residuals" because eacﬁ Im 1 is the residual of
the least squares problem

mintal; - bly
£ L 2
(Ref. 7). The selection of the minimum of that
sequence (Im I} gave rise to the algorithmic
name, Minimal Residual QR algorithm.

2.2 Generalization of the Two-Dimensional Case

The generalization of the two-dimensional
case, given in pseudo-programming-language form,
is summarized in the following algorithm.

Algorithm 1:

Define:

A=A = [a: vee Ay tee a;] and bl = b
(5)

1) Select column vector of Al closest to
b", based on the computed sequence of residuals
(lmll). This column is called 33.

2) Interchange the jth and ith column
vector of Al by the column permutation matrix

"1'

3) Perform an orthogonal projection Q;,
such that

R(i-1)| R(1-1)x(n-1+1)
T 11 12
o i i il"i
0 |a1 . aJ cee @y
(1) | o(1)x(n-i)
P R
- i+ f+1
L 0 a1 0t
[p{1) | (1) x(n-i)
o e 6)
- f+1 (
0 A
and
- H
i »
Qb = L‘nl]
where Rﬁt) is an ixi upper-triangular matrix

and Rﬁ;)x(J) is an ixj rectangular matrix.

) PRank determination test.
END

The rank determination in the fourth step of
the dn-joop, i.e., rejecting one of the columns
of A, can be done in various ways. In this
paper, this determination will be based on the
so-called partial F-test quantities, such as
those used in SRT. This is outlined in
section 3.

2.3 Implementation Note on the MRQR Algorithm

An efficlent way to calculate the residuals
lmll and to perform the orthogonal transforma-
tions Q; in Eq. (6) is described in Ref. 7.
Here we initially transform problem (1) to:

1
T T _ Ri, _ |b_
milehAx - thl2 z minl[o}x [0 ]|2 (7

where R i3 an nxn upper-triangular matrix
and b‘ e Rn¢1.

This compression of the data can be done
sequentially, such as with the construction of the
"normal" equations (see section 3). This sequen-
tial ability also makes this scheme attractive
from the data storage point of view.




Next, Algorithm 1 is applied to the right-
hand side of Eq. (7). A combination of these
intermediate steps would then result in the fol-
lowing reformulation of problem (1).

mini(Q] ... Ql1Q Alx,

T
een 1'x)
b 4 'k

N ML
T T:aT
- 9, ... Q)lgb1, (8)

where [Q: . Q?] will be denoted as Qg and
[w1 ...'uk] as =.

Note: The robustness properties of the MRQR
algorithm rely on the use of orthogonal transfor-
mations, denoted in Eq. (8) by Q,, Q;, and =,
respectively. These do not modify the error pat-
tern present on the original data.

3. Relationship of the MRQR Algorithm with
Stepwise Regression

The classical stepwise regression technique
(SRT) solves problem (1) via the so-called normal
equations.

(ATAlx = ATb (9)
From this set of equations the partial F-test
quantities, the partial correlation coefficients,
and other quantities are computed.’ '™ These
latter quantities form the crucial information
source in adding (or subtracting) a new variable
Xy in the regression model. The partial F-test
quantities are defined next.

Definition 1. When in the construction of

the regression model, we add parameter x, to the
model already containing 1i-1 parameters, the
F-test value for that parameter X, is:
CT € tTC
1-1%1-1 7 %1%y
Fe = T (m - 1) (10)

L tlcl

where ¢, ,, e, are the residuals of regression
models containing {i-1 and i parameters,
respectively.

The quantity defined in Eq. (10) can also be
derived from the MRQR algorithm. In order to
clarify this, let us focus at the {th stage of
the do-loop of algorithm 1. The partial F-test

value for each parameter x, not yet in the model
becomes:

i.2 t,2
b l2 - lm‘lz

X, - 1.2
L Im'_l2

(m - 1) (1)

The difference of the two norms in Eq. (11)
does not have to be computed explicitly; it
begomes available during the computation of
Im I,. If we denote this difference by ldllz.
then Eq. (11) becomes

= (m - 1) (12)

The F-test quantities now allow us to make a
decision about the statistical significance of
adding parameter Xy to the model. Statistical
significance corresponds to the F-test values
being above a threshold Fu, which is taken from
statistical tables about the F-distribution
(e.g., Ref. 4)., From Eq. (12), we clearly see
that we can impose this test directly on the ele-
ments of the derived residual sequence (Imln } in
the MRQR algorithm. Based on the desired thresh-
old F“, such a test would become

i n
e ldlIZV(m - i)
5 § T ———
.Fa
This inequality precisely reveals the rela-
tionship between the MRQR and SRT. It indicates
that the same parameter x, would be added to the
model whether based on the (Imtlz) sequence or the
[F*z) sequence.

Im: (13)

This section summarizes the use of the MRQR
algorithm as a robust implementation of the clas-
sical stepwise regression scheme. Furthermore, as
demonstrated in Ref. 7, the MRQR algorithm gives
rise to additional parameters, such as smallest
singular values, that may be helpful in construct-
ing the regression model. In this paper, such an
additional feature is presented in section 4.2.

4. Experimental Evaluation

4.1 Demonstration of the Equivalence between MRQR
and_SRT

In this first example, the data taken from
Ref. 9 (p. 647) and analyzed in Ref. 4 via the
classical SRT are analyzed by the proposed MRQR
algorithm. These data, summarized in Table t,
comprise four candidate solutions (i.e., the
columns of the A matrix), and a right-hand side
(the b-vector), from which 13 samples have been
recorded. Hence, m = 13 and n = U. In this
section the candidate solutions will be referred
to by their corresponding component of the
x-vector, defined in Eq. (1). The results of the
MRQR algorithm are summarized in Table 2. Compar-
ison of the partial F-test values derived from
MRQR, denoted by F;, with those derived from SRT,
denoted by F,, clearly demonstrates the equiva-
lence of both schemes. Furthermore, we also
observe that using the (Imll } sequence results in
the same model as using the partial F-test
values.

4.2 An Additional Feature of the MRQR

In analyzing real data, visual inspection of
time-history plots of the available data is often



used. Such plots of the candidate solutions and
the rhs might allow (or influence) the decision of
which parameter to include in the regression model
or might help to Judge the validity of the
extracted model. If the same graphical infor-
mation for all subsequent decision stages is
desired, it is generally necessary to store the
original A-matrix and explicitly compute the
residuals of the columns not yet in the model.

In-the ith decision stage, the matrix A
is partitioned as

A= (al” n-l+1]

| A (14)
where A1’1 designates the already-selected
columns, then the r?giduals of tqe columns in
A"-i+1 pecome [Ai' X - an-te }]. These resid-
uals can also be compuEed from the data available
from the MRQR algorithm without explicitly storing
the A-matrix. Using Eqs. (6-8) they become

0 ...0
T i (15)
. a

g v aj .

9 ...
QlQy -+ Qg%

Here only [Q1 .o 01_1] is stored explicitly,
whereas the information to construct Q, can be
stored in the lower triangular part of [R|0]T in
Eq. (7).10 In this way, use of Eq. {15) becomes a
very reliable and storage-efficient way to evalu-
ate residuals in the regression analysis.

This feature is demonstrated using the fol-
lowing example taken from Ref. 11 (p. ID-4.7).
Here the original plant was generated by the fol-
lowing static model.

y(t) = 1.2 sin(t) + 2 sin(.7t) + 3 cos(t)
- 0.1{sin(2t) + &] - 2 sin{.99t) + e (16)

where § and e are zero-mean white noise
sequences with standard deviations of 0.001 and
0.1, respectively.

In the regression analysis, the following
model was postulated.

b(t) = X, sin(t) «+ L sin(.7t) + x3 cos(t)

+ %y cos(3t) (17)

The four candidate solutions {sin(t),
sin(.7t), cos(t), cos(3t)} and y(t) of Eq. (16)
are shown in Fig. 2. Clearly, from this figure
candidate solution X3 appears most closely
related to the rhs, as was also demonstrated by
the F-test values or the (Imll } residuals.

After this selection, the remaining parts of the
other candidate solutions as well as the remaining
part of the rhs are shown in Fig. 3.

Next the candidate solution Xy wWas
selected. Again, Fig. 4 displays the residuals of
the remaining columns and the rhs. From this
figure the "high" correlation with x; becomes
clear. The residuals of the remaining signals,
i.e., rhs and xy, are displayed in Fig. 4.

From this analysis, we clearly observe that
the residuals of each of the candidate solutions
after each selection are nearly the same as the
candidate solutions before the selections. This
is a clear indication of "orthogonality" of the
candidate solutions, which is also attributed to
the value of the condition number of the matrix
containing the original four candidate solutions.
The latter is =2, which clearly is close to 1.

This example demonstrates one feature of this
"residuval® analysis, but practical experience
might provide additional uses.

4.3 Numerical Superiority of the MRQR

In the previous two examples, the condition
number of the original A-matrix, as defined in
Eq. (1), was very close to 1. For these cases,
the F-tests computed from the MROR algorithm or
the SRT are completely identical. For cases where
the condition number is larger, this numerical
equivalence may be lost, as is demonstrated by the
following least-squares problem:

-—
Q -
—_
w

min]{® 0 X - (18)
0

>
(=2 ]
(=, ]
™
™

2

where ¢ is a very small number. The normal
equations are

1+ :2 1 1 3+ ez
1+ ;2 1 x = |3+ c2 (19)
1 1 1+ c2 3 cz
When e is taken, for example, equal to 10‘8,
with a machine precision of 107", the matrix

aTa in Eq. (19) becomes singular and clearly
destroys the accuracy of the F-test values. With
the use of the MRRR algorithm and the same machine
precision of 107! , this does not occur.

5. " Conclusion

A new technique to solve subset regression
problems has been presented. The technique is
called the minimal residual QR algorithm (MRQR).
Basically, it performs a QR factorization with
column pivoting. It has been shown analytically




that the MRQR algorithm can be used as a numeri-
cally stable implementation of existing stepwise
regression techniques. The numerical stability is
demonstrated in an experimental evaluation study.

From this technique, a reliable solution of
subset regression problems has been derived that
allous the use of statistical parameters commonly
used in classical solutlons, such as the stepwise
regression technique. This new technique should
allow more "accurate" models to be constructed,
especially when a high correlation exists between
candidate solutions in the model.
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Table 1 Data taken from Ref. 9 (p. 647) in
example 1,
Ty | 22 | 23 | x4 | RHS
70| 20| 60| 600]| 785
1.0]2.0| 150 520| 743
110]15.0| 80| 200 1043
11.0{310| 80| 470 8786
7015.0]| 60)|330] 959
11.0] 550| 9.0 22.0| 109.2
3.0]710]|170| 6.0] 102.7
1.0]|31.0] 220 | 440} 725
201540 180|220 93.1
210470 40 260 1159
1014001 230340 838
1101680} 90| 12.0] 113.3
1001630 80| 120 109.4




Table 2 (Retyped) computer output of MRQR on the
data of Ref. 9 (p. 647).

A. SELECTING THE FIRST COLUMN FOR ENTRY

SEL. # | CAND. SOL. | [|m} .. 4l Fy Fi
1 z) 35.5764914 | 12.6025177 | 12.6025150
2 EN 30.1054204 | 21.9606047 | 21.9606160
3 z3 443862470 | 4.4034168 | 4.4034159
4 z4 20.7208993 | 22.7985202 | 22.7985270

WHICH SEL # [ENTER 0 TO QUIT SELECTION]: 3

DELETING A COLUMN FROM THE FIRST 1 SELECTED

SEL. #

CAND. SOL.

R

F

1

T4

22.7985202

22.7985270

WHICH SEL # [ENTER 0 TO SKIP|: 0

B. SELECTING THE SECQOND COLUMN FOR ENTRY

SEL. # | CAND. SOL. | [lm% z.; | Fy F
1 zy 8.6465085 | 108.2239145 | 108.2238900
2 T2 29.4767726 1724839 1724847
3 T3 132566210 | 40.2945810 | 40.2945430

WHICH SEL # [ENTER 0 TO QUIT SELECTION}: 1

DELETING A COLUMN FROM THE FIRST 2 SELECTED

SEL. # | CAND. SOL. Fy £
1 Ty 159.2952101 | 159.2952400
2 I 108.2239145 | 108.2238900

WHICH SEL # [ENTER 0 TO SKIP}: 0

C. SELECTING THE THIRD COLUMN FOR ENTRY

SEL. # | CAND. SOL. | Im¥ 5/ A R R
1 Z; 6.9262346 | 5.0258650 | 5.0258074
2 3 7.1299448 | 4.2358460 | 4.2358519

WHICH SEL # [ENTER 0 TO QUIT SELECTION]: 1

DELETING A COLUMN FROM TIHE FIRST 3 SELECTED

SEL. # | CAND. SOL. Fy R
1 T4 1.8632624 | 1.8632548
2 ) 154.0076353 | 154.0080400
{ 3 23 5.0258646 5.0258974

WHICH SEL # |[ENTER 0 TO SKIP}: 0

D. SELECTING THE FQURTII COLUMN FOR ENIRY.

SEL. #

CAND. SOL.

""“4«;[;[,‘#“

Fy Fy

1

z3

6.9183549

.0182335 | .0182345

WHICH SEL # [ENTER 0 TO QUIT SELECTION|: 0

SUMMARY

RANK ESTIMATE: 3

PIVOT INFORMATION:

ORIGINAL COLUMN 4 PIVOTED TO COLUMN 1
ORIGINAL COLUMN t PIVOTED TO COLUMN 2
ORIGINAL COLUMN 2 PIVOTED TO COLUMN 3
ORIGINAL COLUMN 3 DELETED




.\\\.}

Fig. 1 The MRQR algorithm for the two-dimensional
case (m = 2, n = 2).

CANDIDATE SOLUTIONS

RIGHT HAND SIDE

TIME

Fig. 2 Time-history plots of the candidate solu-
tions and right-hand side before first selection
in the MRQR.



CANDIDATE SOLUTIONS AFTER FIRST SELECTION

CANDIDATE SOLUTIONS AFTER SECOND SELECTION
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Fig. 3 Time-history plots of the candidate solu- Fig. I Time-history plots of the candidate solu-

tions and right-hand side after first selection ir

the MRQR.

-1

-2

-3
-4

in the MRQR.

CANDIDATE SOLUTION AND RIGHT HAND
SIDE AFTER THIRD SELECTION

RESIDUAL
— — x4 Smmeu—— rhs

TIME

Fig. 5 Time-history plots of the candidate solu-

tions and right-hand side after third selection in
the MRQR.

tions and right-hand side after second selection
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